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ABSTRACT

A stochastic model of climate variability is considered in which slow changes of climate
are explained as the integral response to continuous random excitation by short period
“weather”” disturbances. The coupled ocean-atmosphere—cryosphere-land system is
divided into a rapidly varying “weather”’ system (essentially the atmosphere) and a
slowly responding “climate” system (the ocean, cryosphere, land vegetation, etc.). In
the usual Statistical Dynamical Model (SDM) only the average transport effects of
the rapidly varying weather components are parameterised in the climate system. The
resultant prognostic equations are deterministic, and climate variability can normally
arise only through variable external conditions. The essential feature of stochastic
climate models is that the non-averaged ‘“weather” components are also retained.
They appear formally as random forcing terms. The climate system, acting as an in-
tegrator of this short-period excitation, exhibits the same random-walk response
characteristics as large particles interacting with an ensemble of much smaller par-
ticles in the analogous Brownian motion problem. The model predicts ‘‘red” variance
spectra, in qualitative agreement with observations. The evolution of the climate prob-
ability distribution is described by a Fokker-Planck equation, in which the effect of
the random weather excitation is represented by diffusion terms. Without stabilising
feedback, the model predicts a continuous increase in climate variability, in analogy
with the continuous, unbounded dispersion of particles in Brownian motion (or in a
homogeneous turbulent fluid). Stabilising feedback yields a statistically stationary
climate probability distribution. Feedback also results in a finite degree of climate
predictability, but for a stationary climate the predictability is limited to maximal

skill parameters of order 0.5.

1. Introduction

A characteristic feature of climatic records is
their pronounced variability. The spectral analy-
sis of continuous climatic time series normally
reveals a continuous variance distribution en-
compassing all resolvable frequencies, with
higher variance levels at lower frequencies.
Combining different data sources of various
time scale and resolution (recorded meteoro-
logical data, varves, ice and sediment cores,
global ice volume) the increase in spectral
energy with decreasing frequency can be traced
from the high frequency limit of climate varia-
bility (approximately 1 cycle per month, fol-
lowing the definitions adopted in GARP Pub-
lication 16, 1975) down to frequencies of order
1 eycle per 10% years (cf. GARP-US Committee
Report (1975), Appendix A). An understanding
of the origin of climatic variability, in the entire
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spectral range from extreme ice age changes to
seasonal anomalies, is a primary goal of climate
research. Yet despite the long interest in the
ice-age problem and the more recent intensifica-
tion of climate research there exists today no
generally accepted, simple explanation for the
observed structure of climate variance spectra.

Various attempts have been made to link
climatic changes to variable external factors
such as the solar activity, secular changes of
the orbital parameters of the earth, or the in-
creased turbidity of the atmosphere following
volcanic eruptions (cf. reviews in GARP Pub-
lication 16). A persistent difficulty with these
investigations is that the postulated input—
response relationships, if they exist, are not suf-
ficiently pronounced to be immediately obvious
on inspection of the appropriate time series.
Thus a detailed statistical analysis is necessary,
for which the data base is often only marginally
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474 K. HASSELMANN

adequate. Summaries of solar-climate relations
extracted by statistical techniques may be
found in King (1975) and Wilcox {1975); a criti-
cal analysis of the statistical significance of
some of the claimed correlations has been given
by Monin & Vulis (1971).

Climate variations have also often been dis-
cussed in terms of internal atmosphere—ocean—
cryosphere-land feed-back mechanisms. Posi-
tive feedback amplifies the response of the
system to changes in the external parameters
and, if sufficiently strong, can produce unstable
spontaneous transitions from one climate state
to another. Feedback mechanisms have gener-
ally been formulated in terms of highly simpli-
fied energy-budget models containing only a
few ‘‘climate’” variables, such as the zonally
averaged surface temperatures, the area of the
ice sheets and the albedo of the earth’s surface.
A basic difficulty of unstable feedback models
(apart from-- or possibly because of—their high
degree of idealization) is that they tend to pre-
dict climatic variations as flip-flop transitions
and therefore fail to reproduce the observed
continuous spectrum of climatic variability.

In this paper an alternative model of climate
variability i1s investigated which predicts the
basic structure of climatic spectra without in-
voking internal instabilities or variable external
boundary conditions. The variability of climate
is attributed to internal random forcing by the
short time scale ‘““weather” components of the
system. Slowly reponding components of the
system, such as the ice sheets, oceans, or vege-
tation of the earth’s surface, act as integrators
of this random input much in the same way as
heavy particles imbedded in an ensemble of
much lighter particles integrate the forces
exerted on them by the light particles. If feed-
back effects are ignored, the resultant “Brown-
ian motion” of the slowly responding compo-
nents yields r.m.s. climate variations—relative
to a given initial state—which increase as the
square root of time. In the frequency domain,
the climate variance spectrum is proportional
to the inverse frequency squared. The non-
integrable singularity of the spectrum at zero
frequency is consistent with the non-stationarity
of the process. The spectral analysis for a finite-
duration record yields a finite peak at zero fre-
quency proportional in energy to the duration
of the record.

In order to obtain a statistically stationary

response, stabilising negative feedback proces-
ses must be invoked. Thus from the viewpoint
of the present model, the problem of climate
variability is not to discover positive feedback
mechanisms which enhance the small variations
of external inputs or produce instabilities, but
rather to identify the negative feedback pro-
cesses which must be present to balance the
continual generation of climatic fluctuations
by the random driving forces associated with
the internal “weather” interactions.

Following the derivation of the random-walk
characteristics of a stochastically driven climate
system in Sections 2 and 3, the basic Fokker-
Planck equation governing the evolution of
such a system is presented in Section 4. Special
solutions for a system with linear feedback are
given in Section 5, and the results are then ap-
plied to the analysis of climate predictability in
Section 6.

Some of the concepts underlying the present
stochastic model have been expressed previously
by Mitchell (1966) in his investigation of seca-
surface temperature (SST) anomalies. An ap-
plication of the present model to SST data and
to temperature fluctuations in the seasonal
thermocline i1s given in Part 2 of this paper
(Frankignoul & Hasselmann, 1976). In Part 3,
the effect of introducing stochastic forcing into
sunple statistical dynamical models of the
Budyko-Sellers type is investigated (Lemke,
1976).

2. Relationship between GCM’s, SDM’s
and stochastic forcing models

It is useful to introduce a formal notation
which 1s independent of the individual model
structure. Let the Instantaneous state of the
complete system atmosphere-ocean—cryosphere—
land be described by a finite set of discrete
variables z =(z,, 2,, ...). The state vector z may
be taken to represent the fields of density, ve-
locity, temperature, ete. of the various media,
as defined at discrete grid points and levels, or
as given by the coefficients of some suitably
truncated functional expansion. The evolution
of the system will then be described by a scries
of prognostic equations

B () (2.1)
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where w, is a known (in general complicated
nonlinear) function of z. For the following we
ignore the parameterization problems associated
with the projection of the complete system on
to a finite set of parameters; we assume that
for our purposes the prognostic egs. (2.1) ac-
curately describe the evolution of the system
for all times of interest.

A basic assumption of most models is that
the complete system z can be divided into two
subsystems, z = (X, y), which are characterised
by strongly differing response times 7,, 7,. Thus
writing eq. (2.1) in terms of the two subsystems,

d
;xt_, = (X, y) (2.2)
d
2= () 2.3)

it is assumed that

d -1 d -1
o) )bl )

The fast responding components x; may be
identified with the normal prognostic ‘‘weather’’
variables used in deterministic numerical weath-
er prediction or General Circulation Models
(GCM’s), whereas the slowly responding “cli-
mate” variables y, may be associated with
variables such as the sea surface temperature,
ice coverage, land foliage, etc. which are nor-
mally set constant in weather prediction models
but represent essential prognostic variables on
climatic time scales. 7, i3 typically of the order
of a few days, whereas most climate variables
have response scales 7, of the order of several
months, years or longer. Thus the inequality
(2.4) is generally well satisfied.

With presently available computers it is not
possible to integrate the complete coupled sys-
tem (2.2)-(2.3) over periods of climatic time
scale O(z,). High resolution GCM’s are normally
used to integrate the subset of equations (2.2)
over an intermediate period T, in the range
T, <7, <7, for which the *‘climatic’ variables
can be regarded as constant, but which is still
sufficiently long to define the statistics of the
weather variables x for a given climatic state
y. Thus although GCM’s provide important in-
formation for climate studies, they are not
suitable for the simulation of climate variability
as such.
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Dynamical investigations of climate varia-
bility have been based in the past largely on Sta-
tistical Dynamical Models (SDM’s), which ad-
dress the subset of egs. (2.3). In the usual ap-
proach it is argued that for the time scales 7,
of interest in (2.3), the rapidly fluctuating
terms in the prognostic equations can be ig-
nored, so that (2.3) can be averaged over the
period t;, thereby removing the weather fluc-
tuations while still regarding y in the right hand
side of (2.3) as constant,

dy
7; = (o, Y (2.5)

Formally, it will be more convenient in the
following to regard the average <...) as an
ensemble average over a set of realisations x
for given y. It is assumed that ergodicity holds,
so that ensemble averaging and time averaging
are equivalent.

Since v; is in general a nonlinear function of
x, the average rate of change (v;,> of y, will
depend on the statistical properties of x as
well as on y. To close the problem, the statistics
of X must therefore be expressed in.terms of y
through the introduction of some closure hypoth-
esis. For example, in zonally averaged energy
budget models of the Budyko (1969)-Sellers
(1969) type the meridional heat fluxes by stand-
ing and transient eddies must be parameterised
in terms of the mean meriodional temperature
distributions.

Although this class of model may be termed
statistical in the sense that an averaging opera-
tion and a statistical closure hypothesis are in-
volved, the reduced eq. (2.5) is in fact deter-
ministic rather than statistical. It is known that
the asymptotic solutions of nonlinear deter-
ministic equations containing a relatively small
number of degrees of freedom can already ex-
hibit non-periodic, random-type oscillations
similar in character to observed weather or
climate fluctuations (cf. Lorenz, 1965). How-
ever, simple models with these features appear
to have been investigated primarily in relation
to weather simulation. Most of the better known
simple SDM’s predict a unique, time-independ-
ent asymptotic state for any given initial
state. These models appear inherently incapable
of generating internally time variable solutions
with continuous variance spectra, as required
by observation. In the past climate variability

95U8017 SUOWIWOD SAIERID 3ded! [dde au) Aq pausenob afe sajoie YO ‘9sN 0 Sa|nJ Joj Aeiq i aUlUQ AB]IA UO (SUONIPUD-PUE-SWLS)LIY"A3|IM AeIq 1 [BUIUO//:SdNL) SUONIPUOD Pue Swid | 8U) 39S *[£202/20/22] Uo Akeiqiauliuo A8)im ‘-1id3,18a anbeyioljaig Aq X'969000Y'9/6T 06VE-ESTZ [TTTT OT/I0p/L0o A3 |IM AreIq1jpul|uo//SANY Woi) pepeojumoq '9 ‘96T ‘06vEESTE



476 K. HASSELMANN

has therefore been explained in the framework
of classical SDM’s as the response of the system
(2.5) to variations of external boundary con-
ditions, such as the solar radiation and the tur-
bidity of the atmosphere, rather than through
internal interactions.

By a natural extension of the SDM, however,
one can obtain an alternative climatic model
which yields continuous variance spectra with
the observed ‘“red” distribution directly through
internal interactions. (This, of course, does not
exclude the possible significance of additional
externally induced climatic changes). Return-
ing to eq. (2.3), let dy =y(¢) —y, denote the
change of the climate state relative to a given
initial state y(t =0) =y, in a time ¢<7, suffi-
ciently small that y can still be regarded as
constant in the forcing term on the right hand
side of the equation. The change may be divided
into mean and fluctuating terms, dy = {dy) +y’
where the ensemble average is taken here over
all x states for fixed y, (not y). The mean change
(dy> follows from (2.5),

By ={wHt (2.6)

(for this term it is irrelevant whether the aver-
age refers to fixed y or y,). The rate of change
of the fluctuating term is given by

(X, ¥) = <vp> = (2.7)

where ;> =0 and y; =0 for ¢ =0.

The statistics of vj(¢) are defined through the
statistics of the weather variables x{¢) for given
Yo- It is assumed that x(), and therefore v(t),
represents a stationary random process.

Equation (2.7) is identical to the equations
describing the diffusion of a fluid particle in a
turbulent fluid, where y; represents the coor-
dinate vector of the particle and v the turbulent
{Lagrangian) velocity It is well known from
this problem (Taylor, 1921, Hinze, 1959) that
for statistically stationary v;, the integration of
(2.7) yields a non-stationary process y;, the co-
variance matrix (y;y;> growing linearly in time
¢t for t>t,. Taylor pointed out in his original
paper that this result could be interpreted
physieally as the continuum-mechanical anal-
ogy to normal molecular diffusion or to Brown-
ian motion. In fact, for ¢>7, it is immaterial
for the (macroscopic) statistical properties of
¥i, involving time scales >t,, whether the forc-
ing is continuous or discontinuous.

The nonstationary response y; to stationary
random forcing »; in the stochastic model im-
plies that climate variations would continue to
grow indefinitely if feedback effects were ig-
nored. These, of course, will begin to become
effective as soon as the integration is carried
into the region ¢ =0(z,). The properties of the
random walk model in the ranges ¢ <7, and ¢ =
O(r,) will be discussed in more detail in the fol-
lowing sections.

The relationship between GCM’s, SDM’s and
stochastic forcing models may be conveniently
summarized in terms of the Brownian motion
analogy. The climate variables y and weather
variables X may be interpreted in the analo-
gous particle picture as the (position and mo-
mentum) coordinates of large and small par-
ticles, respectively. The analysis of climate
variability in terms of SDM’s is then equivalent
to determining the large-particle paths by con-
sidering only the interactions between the large
particles themselves and the mean pressure and
stress fields set up by the small-particle mo-
tions (plus the influence of variable external
forces). Numerical experiments with GCM’s
correspond in this picture to the explicit com-
putation of all paths of the small particles for
fixed positions of the large particles. Even if
the large particles were allowed to vary during
the computation, it would normally not be
feasible to carry the integrations sufficiently
far to consider appreciable deviations of the
large particles from their initial positions. Fi-
nally, the approach used in the stochastic forcing
model corresponds to the classical statistical
treatment of the Brownian motion problem, in
which the large-particle dispersion is inferred
from the statistics of the small particles with
which they interact. In contrast to the Brownian
motion problem, the variables X in the real
climate-weather system are, of course, not in
thermodynamic equilibrium, so that the sta-
tistical properties of X cannot be inferred from
the statistical thermodynamical theory of
energetically closed systems, but must be evalu-
ated from numerical simulations with GCM’s
{or from real data). A great reduction of com-
putation is nevertheless achieved through a
statistical treatment, since relatively little sta-
tistical information on X is actually needed, and
this can be obtained from GCM experiments of
relatively short duration 7, <z,.

At first sight it may appear surprising that
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a statistical reduction of the complete climate—
weather system is possible at all without ar-
bitrary closure hypotheses, since one is ac-
customed to regarding systems involving tur-
bulent geophysical fluid flows as basically ir-
reducible, strongly nonlinear processes. The re-
duction in this case is a consequence of the
time-scale separation (2.4). This property is
lacking in the usual turbulent system. How-
ever, the condition is familiar from ‘‘weak-
turbulence” theories for plasmas (cf. Kadomt-
sev, 1965) or from similar theories of weakly
interacting random wave fields in solid state
physics, high energy physics and in various
geophysical applications (cf. Hasselmann, 1966,
1967). In essence, the property (2.4) enables
statistical closure through the application of
the Central Limit Theorem, whereby the re-
sponse of a system is completely determined
statistically by the second moments of the input
if the forcing consists of a superposition of a
large number of small, statistically independ-
ent pulses of time scale short compared with
the response time of the system.

3. The local dispersion rate

For times t in the intermediate range 7, <
t <7, the integration of (2.7) yields linearly in-
creasing covariances in accordance with Tay-
lor’s (1921) relation

Yy yp> = 2Dyt (3.1)
where
o0
D,,:%f Py()dr (3.2)
— o0

and P,(r) = (it +7)vy(f)> denotes the covari-
ance function.

Physically, the dispersion mechanism may
be interpreted as the response to a large num-
ber of statistically independent random changes
Ay, =v;. At induced in y, at time increments
At of the order of the integral correlation time
of v

It is useful to represent the dispersion pro-
cess also in the Fourier domain. Writing

00
vi{e) = f Viw) e do (3.3)
bl &)
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the solution of (2.7) may be expressed as the
Fourier integral

—o0

o0 o0
i) = f Y,(w)e""tda)—f Y (w)do (3.4)

where

v
Y o) = _;6(:,) (3.5)

The second, time independent term on the right
hand side of (3.4) arises through the initial con-
dition y; =0 for £ =0.

For a stationary process, the Fourier com-
ponents are statistically orthogonal,

V() Vi) = 8w —o’) Fy(o)

where F(w) denotes the (two-sided) cross
spectrum of v,. The Fourier components Y (w)
are then also statistically orthogonal, and the
cross spectrum of yi(f) is given by

F
G yw) = :ff’ ) (@+0) (3.6)

The existence of a non-integrable singularity
in Gy at w =0 is consistent with the non-sta-
tionarity of y;. The fact that the non-stationary
contribution to y; is concentrated at zero
frequency can be confirmed by evaluating the
contribution to the covariance from a narrow
band of frequencies —Aw <w < Aw centered at
zero frequency. Noting that the second integral
in (3.4) represents a zero-frequency contribu-
tion, this is given by

, © 2(1 - ¢
YYD ae = f F,,(w)i—:?s—“’ldw (3.7)

The weighting function 2(1 —cos wt)/w? has a
maximum value equal to 2 at w =0 and & peak
width proportional to 1/¢. Thus its integral is
proportional to ¢, and in the limit of large ¢, as
the peak becomes infinitely sharp, the function
can be replaced by the d-function expression

2A-c0s0h) o (@) (@t 1) (3.8)
(2]

For large ¢ (3.7) therefore becomes

<y1ys> = 2ntF,(0) (3.9)
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covariance

spectrum

response
Gij = Fij lw?

)
{
)
|

T

Fig. 1. Input and response functions of stochasti-
cally forced climate model without feed-back; (a)
covariances, (b) spectra.

The subseript Aw has now been dropped, since
the contribution to (y;y;> from frequencies
|w] = Aw is constant and therefore becomes
negligible compared with the nonstationary
contribution for large ¢.

Equation (3.9) represents a special case of
the resonant response of an undamped linear
system to random external foreing. The general
result for such systems states that the energy
of the response is concentrated in spectral lines
at the eigenfrequencies of the system, and that
the energy of each line increases linearly with
time at a rate proportional to the spectral den-
sity of the input at the eigenfrequency (cf.
Hasselmann, 1967). Equation (3.9) corresponds
to the case of a system with a single normal
mode of frequency w =0.

The equivalence of the expressions (3.1), (3.2)
and (3.9) can be recognised using the Fourier
transform relation

1 o0
Fw) = P f Py(r)e " dr (3.10)

—0

It follows from (3.10) that normally, for
F;(0) £0, the spectrum of any stationary pro-
cess v; becomes white (constant) for sufficiently
small frequencies (in other words, one need
consider only the first term of the Taylor ex-

pansion of the spectrum). Generally, thereexists
some cut-off time lag O(r,) such that PU(T) ~0
for 7>7,. For frequencies o <t;', the expo-
nential in (3.10) can then be set equal to one,
so that F(w)~ F;;(0). In this range equation
(3.6) may then be replaced by

Gylw) = EZ)(TO) (ty ' Lokt (3.11)
The left side of the inequality follows from the
restriction to integration times ¢<r,, which
limits the definition of the spectrum to fre-
quencies large compared with z,".

The main features of the random walk re-
sponse in the time and frequency domain are
indicated in Fig. 1.

In most chimate applications the reponse will
lie in the low frequency range w <7;' where the
input spectrum can be regarded as white and
equation (3.11) is applicable. For the genera-
lization of the theory in the next section it is
important to note that the constant level of the
input spectrum at low frequencies can be deter-
mined from relatively short time series of the in-
put, the record length required being governed
by the time scale of the input, rather than the
time scale of the response. The length of the time
series need only be long enough to evaluate the
covariance function for time lags up to the cut-
off time lag of order v,. For example, in the
problem of the generation of SST anomalies by
random fluxes at the sea surface (considered
in Part 2 of this paper), the statistical structure
of the atmospheric input can normally be ade-
quately determined from time series of a few
weeks duration (ignoring the seasonal signal).
From this the statistical properties of the ran-
dom walk response according to (3.1), (3.2),
and (3.11) can be evaluated for much longer
time periods, of the order of several months.
The upper limit ¢ —=O(z,) of the response time
is determined ultimately by the breakdown of
the uncoupled random walk model when inter-
nal feedback effects begin to come into play.

The dispersion coefficients D,, can be in-
ferred indirectly, without reference to weather
data, from the rate of growth of the covarian-
ces <yiy;> as evaluated from climatic time series.
Alternatively, if the stochastic foreing is known
as a function of the weather variables, the zero
frequency level of the spectral input can be
determined directly from weather data. By
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either method, application of the random walk
model, for example, to ice sheet data or SST
anomalies indicates that the r.m.s. rate of di-
vergence of climate from its present state by
random weather forcing is considerable: with-
out stabilising feedback the random walk mod-
el predicts that changes in the extent of the
ice cover comparable with ice-age amplitudes
would occur within time periods of the order
of a century. The inclusion of feedback is thus
essential for a realistic climate model. The gen-
eralisation to a model including arbitrary in-
ternal coupling is carried out in the next sec-
tion.

4. The Fokker-Planck equation for a
general stochastie climate model

The inequalities 7, <t <7, limiting the range
of validity of the random walk model without
feedback are characteristic of a two-timing
theory. With respect to the rapidly varying
components of the system the theory represents
an asymptotic infinite-time Iimit, but at the
same time the analysis is valid only for infini-
tesimal changes of the slowly varying com-
ponents. The standard way of removing the
restriction ¢ <7, is to interpret the infinitesimal
changes of the slowly varying components as
rates of change, thereby obtaining a differential
equation which is valid for all times, provid-
ed the original conditions on which the local
theory was based continue to remain valid.

Since y represents a random variable, the
appropriate differential equation should be
formulated for the probability density distribu-
tion p(y,?) of climatic states in the climatie
phase space y. For a system in which the mean
value and covariance tensor of the infinitesimal
changes dy, =y,(t) ~¥,., in an infinitesimal time
interval ¢t <rt, are both proportional to ¢ (the
effects of the higher moments can be shown to
be small on account of the two-timing condi-
tion (2.4)) the evolution of the probability dis-
tribution p(y,t) is governed by a Fokker-
Planck equation (cf. Wang and Uhlenbek, 1945)

op 2 . 7} op
—+—(vm)——(D,,—) =0 (4.1)
ot oy, oY, oy
where
yryp
T ————2(” = nF(0) (4.2)

Tellus XXVIII (19786), 6

with y; =dy; — (8y,> as before,

and f),=<6y,>/6t—6Dﬁ/ay, or, from (2.6) and
(3.1), (3.9)

" a
vi=<v,>—n£FU(0) (4.3)
i

Provided the two-scale approximation remains
valid, eq. (4.1) describes the evolution of an
ensemble of climatic states with an arbitrary
initial distribution for arbitrary large times.
The propagation and diffusion coefficients 13,,
D,; will generally be functions of y, both di-
rectly and through their dependence on the
statistical properties of the weather variables
x. The equation includes both direct internal
coupling through the propagation term v, and
indirect feedback through the dependence of
the diffusion coefficients on the climatic state.

In practice, the expectation values and
spectra in (4.2) and (4.3), defined as averages
over an X-ensemble for fixed y, will normally
be determined from time averages, rather than
through ensemble averaging. In order that the
average values can be regarded as local with
respect to the climatic time scale 7, but still
remain adequately defined statistically with
respect to the weather variability of time scale
7,, the averaging time 7' must satisfy the two-
sided inequality 7,<7 <t,. The inequalities
imply that the spectral density F;(0) at ‘‘zero
frequency” in eqs. (4.2), (4.3) must be inter-
preted more accurately as the level of the spec-
trum in the frequency range 7;'<w <t;'—as
was already pointed out in connection with eq.
(3.11). The variance spectra of v, for lower fre-
quencies  =O(t,') must be attributed, within
the framework of the two-timing theory, to
the slow variations of the mean variables (v;>
on the climatic time scale. Since (»;,> depends
on the local climatic state, the increase of the
variance spectra of the climatic variables y,
towards lower frequencies will normally be as-
sociated with a corresponding increase of the
variance spectra of v, (and the “weather” vari-
ables x;) in this range. This is not in conflict
with the basic premise of a white input spec-
trum at ‘“low” frequencies. Essential for the
application of the two-timing concept is that
there exists a spectral gap between the “weath-
er’” and “climate” frequency ranges in which
the input spectra are flat (cf. Fig. 2).
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the two-timing theory, v; can be represented
very simply as a zero’th order Markov process.
For the special case of linear feedback and
constant diffusion coefficients, equation (4.1)
can be solved explicitly. These solutions are ap-
propriate for climatic systems with small ex-
cursions. However, several properties of the
linear case discussed in the following two sec-
tions may also be expected to apply qualita-
tively to more general climate models.
Although eq. (4.1) describes the evolution of
p(y, t) in closed form (given the X-statistics for
given y), the probability distribution p(y, ¢)
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Fig. 2. Input and response of stochastically forced
(single component) climate model with linear feed-
back; (@) covariances, (b) spectra. In the ranges
7,<7<7, and 7;'<w<7;' the models with and
without feedback are identical. In the range w <7}’

the spectrum F(w) cannot be regarded as part of
the “weather input”, but is coupled to the climate
response.

The presence of the diffusion terms in (4.1)
implies that climate evolution is necessarily a
statistical rather than a deterministic phenom-
enon. Even if a well defined climate state is
preseribed initially in the form of a J-function
distribution for p, the diffusion term immedi-
ately leads to a finite spread of the probability
distribution p at later times. Without the dif-
fusion term, an initial d-function distribution
would retain its é-function character and simply
propagate along the characteristics dy,/dt =7,
in the climatic phase space.

The analytical integration of eq. (4.1) for an
arbitrary nonlinear climate model with several
degrees of freedom will normally not be pos-
sible. However, solutions can be constructed, for
example, by the Monte Carlo method, in which
eq. (2.5) and (2.7) are integrated numerically
(without the restriction £<7,) for an ensemble
of realisations using an appropriate statistical
simulation of »;. Within the approximations of

provides only a partial statistical description
of the random process y(¢}). A complete statis-
tical description would require, for example,
the set of joint probability distributions
P(¥1, .., ¥p) of the climate states for any set of
times ¢y, ..., 2, or the set of all moments (y,
... Yp> for all p >0. Generalised Fokker-Planck
equations similar to (4.1) can be derived also
for multi-time probability distributions, but
these will normally be of less immediate inter-
est. In practice, Monte Carlo methods of solv-
ing (4.1) actually generate the complete statis-
ties of the process y, as well as yielding p(y, ?),
so that the generalised Fokker-Planck equa-
tions need not be considered explicitly.

5. Linear feed-back models

(a) Solution of the Fokker-Planck equation

For small excursions of the climatic states
about an equilibrium state y =0, say, the dif-
fusion and velocity coefficients in (4.1) can be
expanded with respect to y. Since the feedback
terms must vanish for the equilibrium state, the
coefficients are given to lowest order by

D;; = const (5.1)
0, = Viyyy, Vi =const (5.2)

For a stable equilibrium state, the matrix V
must be negative definite.

The general solution of (4.1} for an arbitrarily
prescribed initial distribution p(y, £ =0) =p,(y)
may be constructed by superposition from the
Green-function solution for an initial d-function
distribution po(y) =6(¥1 — ¥10) .-- (¥ —Yno) 8t an
arbitrary point y,. This is given by the normal
distribution

Tellus XXVIII (1976), 6
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p(y, t) = (2n)~ 2| R

Ry
xexp | =5 (¥ - yd) (v - [y} (5.3)

where the mean [y,] and covariance tensor E; =
[{y; -Ty D). (y; —[y,])] are time dependent func-
tions satisfying the differential equations and
initial conditions

d{yi]
_.d_t‘_ = Vilyel, [yil=yy, for t=0 (6.4)
aR

dtu = 2D+ Ry Vye+ By Vo Byy=0 for t=0

(5.5)

The square parentheses [ ] denote averages
over the ensemble of climatic states y. Equa-
tions (5.4), (5.5) can be verified by substitu-
tion of (5.3) in (4.1) or can be derived directly
from (2.5), (4.1), (4.2) and (4.3). In matrix no-
tation, the solutions may be written

[yl = ey, (5.6)
+
R=RB,—-e"'R e (5.7)

where V+ denotes the transpose of V and R
is the asymptotic stationary solution of (5.5),

2D+ (B Vi + (Boohgy Vi = 0 (5.8)

R, and the corresponding asymptotic equilib-
rium distribution p, (with [y], =0) are inde-
pendent of the initial state y,.

The expressions become particularly simple
if the matrix V is diagonal, V; =4;A, (paren-
theses around the index indicate that the index
is excluded from the summation convention).
Normally, this can be achieved by a suitable
linear transformation of y to new coordinates.
Equations (5.6), (5.7) then become

{#:] = yioexp (Awt) (5.9)

By; = (Ry)y[1 —exp (A + ) €] (6.10)

(Bl = - —20 (5.11)
oW Ay + Ay '

(b) Spectral decomposition of the variance

The Gaussian form (5.3) of the probability
distribution p(y,t) could have been inferred

Tellus XX VIII (1976), 6

directly from the Central Limit Theorem, with-
out invoking the Fokker-Planck equation. The
theorem states that, under very general condi-
tions, the response of a linear system driven
by a statistically stationary input consisting of
a continuous sequence of infinitely short, sta-
tistically independent pulses is Gaussian, in-
dependent of the detailed statistical structure
of the input. This property holds not only for
the probability distribution p, but generally
for the multi-time joint probability distribu-
tion. Thus the statistical structure of the pro-
cess y is completely specified if the first mo-
ments (given by (5.6)) and the second moments

8, +7) = [yt +7) — [yt + )] (y,(0)

— [y, (D] (5.12)

are known.
The latter are given by the solution

8, 1) =eV'R(t) (r >0) (5.13)
of the differential equation

m = VuSy (@>0) (5.14)

ot
under the initial condition S,,(t, T =0) = R,,(1),
with R(t) given by (5.7). Equation (5.14) fol-
lows from (2.5), (2.7) and (5.2), noting that in
the two-timing limit u(r +1) = (vt +1) — (wy(t +
7)>) and y,(t) are statistically uncorrelated for
7 >0, since the correlation time scale of the
random forcing is regarded as infinitely short
compared with the correlation time scale of the
response. This argument does not hold for 7 <0,
since y,(t) in this case includes the response to
v" at the earlier time ¢ + 1. However, the solu-
tion for 7 <0 can be obtained from (5.13) by
interchanging the indices and redefining the
time variables.

Of particular interest is the asymptotic sta-
tionary solution

S(7)= lim S, ) =¢"" Ry (5.15)
t—»a0

which can be compared with the statistical
properties of observed, quasi-stationary cli-
matic time series. If the second moments of the
input (i.e. Dj;) are specified, it is known from
linear systems analysis that S(z) completely
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determines the linear response characteristics
(transfer functions) of the system.

The relation corresponding to (5.15) for the
climate cross spectrum @,;; can best be derived
by direct substitution of the Fourier integral
representation (3.3) in the basic climate equa-
tion

dyi ’
==V vy
dt ij yj i

One obtains
Gij(w) = Ty T Fiey(0) (5.16)

where T =(twl —V)~! (I =unit matrix). For
diagonal V, eq. (5.16) becomes

a _ Fi,(0)
glw)= ——————— (5.17)
{w — k) (o + 2hep)

Equations (5.15), (5.16) may be compared with
the corresponding relations (3.1), (3.11) for a
system without feedback. The deviation covari-
ance <yi y}) considered in section 3 should be
compared in the case of a stationary y-process
with the expression [, ¥;1 = (¥, — 1,0 (¥; — ¥5.0))
(also known as the ‘‘structure function”, cf.
Tatarski (1961)). This can be expressed in terms
of the covariance function as

[Yiyi] = (S;5(0) = 845(x) + (S;5(0) = Sj(x))  (5.18)

The gencral form of the functions G, Yy
and [y; y;] for a system with and without linear
feed-back is shown in Fig. 2. For 7, <7 <7, and
7, <w<7;' the behaviour of both systems is
identical, but for 7 =0(z,) and w :0(1;,1) the
unbounded response of the system without
feedback begins to diverge from the bounded
response functions of the linearly stabilised
system.

6. Climate predictability

The evolution of the probability distribution
ply, t) as governed by the Fokker-Planck equa-
tion {4.1) determines the degree of climate pre-
dictability. If the climate state y, at time ¢ =0
is known, the initial probability distribution p,
is a d-function. For a fully predictable system,
p(¥, t) remains a d-function for all times £ >0.
As pointed out in Section 4, however, the dif-

fusive term in (4.1) results in a broadening of
the probability distribution for ¢ >0, and clim-
ate prediction therefore always entails some
degree of statistical uncertainty.

A simple quantitative measure of the pre-
dictive skill can be defined in terms of the mean
climatic state [y;] and the covariance matrix
By =[(y; — [¥:]) (y; —[y;1)]1. The mean may be
regarded as the climate ‘“‘prediction’. (In the
case of a linear system, this is identical with
the most probable climatic state, but in general
the most probable state and the mean state will
differ.) In order to introduce a measure of skill
as a simple number, the distance J, of the pre-
dicted climate state from the initial state and
the r.m.s. deviation ¢ from the mean must be
defined in terms of some suitable positive de-
finite matrix M,

0y = {Mi;([yi] 7:’/{,0)([y]] ~Y;, o)} (6.1)
e ={M;; R} (6.2)
The usual definition of the skill parameter is

then given by the ratio ‘‘signal to signal-plus-
noise’’,

)
5= (6.3)

N G

For small times ¢t <1, the predicted change J,
increases linearly with time

Oy ~ (M ,v; 008 (6.4)
whereas the r.m.s. error grows as #!,
e~ (2D; M)t (6.5)

Thus initially the skill parameter s, ~ti; the
random deviations from the initial state in-
duced by the stochastic forcing dominate over
the deterministic changes produced by the in-
ternal coupling within the climatic system, and
the predictive skill is small.

For very large ¢, 4, and ¢ will normally ap-
proach the limiting values

S0 = {Mi{[Yidoo — ¥, ) {([¥5]e0 _?!j,o)}‘
e = (M;(Bo) i)t

appropriate to the stationary equilibrium dis-
tribution p,(y)—assuming such a distribution

Tellus XXVIII (1976), 6
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Fig. 3. Predicted climate changes &, relative to
initial state and 6§, relative to asymptotic state,
statistical error &, and skill parameters s,, s, and
g =min (8, 8,), for a linear (single component}
climate system. The initial value is chosen as y, =
(Rx)t =1 (in this case s, and J, happen to coincide).

exists—and the skill parameter s, will become
constant.

The predicted climatic state for large ¢ is
simply the stationary climatic mean state [y],,.
This prediction may be regarded as trivial in
the same way as the prediction through per-
sistence for small £ 1s trivial. Since the contribu-
tion from straight persistence was subtracted
in the definition of s,, it apears more appropriate
to introduce an alternative skill parameter

8,=08,/(" +03)'"* (6.6)
for large t, where

0y = {M([y:] ~ [y)eo) ([y;] — [l } (6.7)

is the deviation of the predicted climatic state
from the stationary climatic mean. The net
skill parameter may then be defined as 8 =min
(81, 83).

The behaviour of s(¢) in the intermediate
range ¢ =0(t,) between the limiting regions in
which either s, or s, is very small depends in
detail on the structure of the climate model.
The general properties of s(¢) to be expected in
this range may be inferred, however, from the
golution for a linear system, cf. Fig. 3. Provided
the initial deviation from the stationary climat-
ic mean is of the same order as the variability
of the stationary asymptotic distribution (for
each degree of freedom separately), the maximal
value of the net skill parameter generally lies
in the neighbourhood of 0.5. This is due to the
fact that the relaxation times for 4, and & are
of the same magnitude, since both are governed
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by the same internal feedback processes. Thus
both 8, and ¢ increase at approximately the
same rate (after the initial period ¢<7,), and
the non-trivial (i.e. non-persistent) component
of the prediction and the statistical error al-
ways remain of comparable magnitude.

These results may be expected to carry over,
at least qualitatively, to nonlinear systems,
provided there exists & unique stationary equi-
librium distribution—i.e. provided the system
is transitive in Lorenz’ (1968) sense. In fact,
the basic properties of the skill parameters s,,
s, outlined above are largely independent of
the detailed dynamics of the climate system
and follow simply from the fact that the evolu-
tion of the system corresponds to a first-order
Markov process. The prediction problem be-
comes more complex in the case of intransitive
systems, in which more than one stationary
distribution may exist (for example, for dy-
namically disconnected regions of the climate
phase space) or for nearly intransitive systems,
characterised by two or more quasi-stationary,
weakly interacting distributions. However, the
discussion of these more complex cases must
necessarily remain rather academic without ref-
erence to a specific climate model and will not
be pursued further here.

7. Conclusions

The principal features of the stochastic cli-
mate model discussed in this paper may be
summarised as follows:

(1) The time scales of the ‘““weather system”
and “climate system’ are well separated.

(2) As a consequence of the time-scale separa-
tion, the response of the climate system to the
random forcing by the weather components can
be described as a continuous random walk or
diffusion process (first-order Markov process).
The response can be completely characterised
by a diffusion tensor, which is proportional to
the constant spectral density of the random
forcing at low frequencies.

(3) The evolution of the climate system is de-
scribed by a Fokker-Planck equation for the
climate probability distribution; the propaga-
tion and diffusion coefficients of the equation
depend on the instantaneous climate state, both
directly and via the weather statistics.

(4) Without stabilising internal feedback
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mechanisms, climate variability would grow in-
definitely.

(5) Despite the stochastic nature of climate
variability, the internal feedback terms in cli-
mate models imply a finite degree of predict-
ability. However, the maximal predicitive skill
for a statistically stationary climate system is
generally no larger than 0.5 and is always
significantly less than unity.

The discussion in this part of the paper has
been restricted to the general structure of
stochastic models, without reference to a spe-
cific model. It should be pointed out, however,
that the extension of a typical SDM of, say,

the Budyko-Sellers type to a stochastic model
requires no basic modification of the internal
structure of the model, but simply the addition
of random driving terms. The relevant statisti-
cal properties of the stochastic forcing functions
can be obtained directly from numerical ex-
periments with GCM’s or from meteorological
data. Thus some of the general properties of
stochastic climate models described in this
paper can be tested rather easily by comparing
observed climatic variability with theoretical
predictions obtained with existing SDM’s after
incorporation of appropriate stochastic forcing
terms (Lemke, 1976).
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CTOXACTUYECKUE MOIEJWN KINMATA

PacemoTpuBaerca croxacTuueckas MoOjeNb H3-
MEHYUBOCTU KJIMMAaTa, B KOTOpPOH MexJeHHHe
H3MEeHeHNsl KiauMmara OOBACHAIOTCA KaK WH-
TerpajbHas peaKUUd HA HeNpepblBHOE Ciayuail-
HOe BO30ymJeHUe KOPDOTKONEPUOAHBIMU <«IIO0-
FOJHBIMH» BO3MYyIleHMAMU. BaaumopgeiicTByio-
masg cucTeMa OKeaH-aTMocepa—Kpuocpepa—
cyma pasgesfeTca Ha OBICTPO UBMeHAINYIOCA
«IIOTOIHYI0» cUCTeMY {aTMocdepa) U HA MeIJIeHHO
OTKIMKAIOIMYIOCA (KINMATHYECKYIO» CHCTEMY
(oxean, kpuocdepa, pacTUTENbHOCTb CYUIM H
T. .). B 00bI4HOM CTATUCTUYECKU-TUHAMUYECKOI
monean (CAM) toneko cpeaumne sdderTs mepe-

Hoca OBICTPO MEHAIIIMXCA TOTOJHHIX KOMIO-
HEHT NapaMeTPUBYIOTCH B KIMMATHYECKON CH-
cTemMe. Peaynbrupylomme  NporHoctudeckue
YPaBHEHUA [[eTePMUHUCTHYHEL M KIMMAaTHYECKHE
Bapuanuu OOBIYHO MOTYT BOSBHUKATH TOJBKO
IIpH M3MEHEHMH BHeHIHMX ycjoBui. CymecTBeH-
HOI 0COOEHHOCTBIO CTOXACTHYECKHX KJIHUMATH-
YeCKUX MojeJiell fIBIAETCA TO, YTO HEOCpPeIHeH-
HHle «MOrofiHble» KOMIIOHEHTH TAaKMe COoXpa-
uaoTrcAa. QopMalbHO OHM NOABIAITCH Kak
cayyaiiHele BBIHY;RAawIUuMe cuabl, Kiaumartu-
yeckas CUCTeMa, AefCTBYIOIIAA KaK MHTerpaTop
3TOT0 KOPOTKONMEPUOJTHOTO BO3OYKAeHMA, npo-

Tellus XXVIII (1976), 6

@5UB0| 7 SUOWILLOD) BAIER.D 3|qeatidde auy Ag pausenob e Sap 1 VO '8N JOSaINI 10} ARIQ1T8UIUO 4811\ UO (SUORIPUOD-PUR-SWBIALIOD" A3 IM AReIq U |UO//SARU) SUORIPUOD Pue SWd L 81 88S *[£202/60/22] Uo ARIqiauliuo 481 *-1id3,72@ enbaupoljaig AQ X'9690001'9.6T 06E-ESTZ (TTTT 0T/I0pAL0D™ A8 1M AR.qjoUI|UO//SANY W01} Papeojumoq ‘9 ‘9/6T ‘06VEESTE



STOCHASTIC CLIMATE MODELS. 1 485

AIBJIFIET Te e CaMble XapPAKTePUCTHKH DeaKLun
cayyaitHoro G6ay:oaHMA, KaK KpYMHHE 4Ya-
CTHIB, B3aMMOReRcTBYIomMe ¢ aHcambiaeMm ro-
pasgo Gojilee MeJNKHMX 4YaCTHI, B AHAJOTHYHOMR
safave GpOyYHOBCKOTO ABU:KeHNA. Monenp npen-
CKa3hIBAeT (KpPACHHIe» CIIEKTPH M3MeHeHM# ma-
paMeTpoB B KAavyeCTBEHHOM coriacuu ¢ Habmro-
TEHNAMU. OBOJIOIUA paclnpefelieHHA BEPOAT-
HOCTell KINMAaTa ONHCHIBAeTCA YpaBHEHHeM
®oxkepa-Ilnanka, B KoropoMm addeKT cayuait-
HOT0 NOrogHOro BO30YHJeHHA ONUCHBAETCA
anddysnoHHbIMU YieHamMu. Bea crabunusnpyio-
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melt o6paTHolt CBA3M Mojesib NpejCKA3HBaET
HelpepHBHOEe YBeJIMuYeHNe W3MEHYMBOCTH KIIH-
MaTa MO AHAJIOTHM € HeNpepLBHOK HeOrpaHM-
YeHHOH aucmepcueit yacTur npm GpOYHOBCKOM
IBMKEHMHM (MM B OXHOPORHOM TYpOyJeHTHOM
noroke). CraGuamaupyiouass o6paTHadA CBA3L
JAaeT CTATHCTHYECKH CTAI[MOHApHOe paclpexe-
JleHue BeposATHocreli kammara. O6parHasA cBA3b
NpOABAAETCA TaKiKe B KOHEUHOlt CTemeHH mpef-
CKa3yeMOCTH HKJIHMATa, HO TIPeNCKasdyeMoCTh
OrpaHMYMBAETCA MAKCHMAaJbHON BeJMYMHON ma-
paMeTpa yMeHHMA NpeAcKasuBaTk nopaaka 0,5.
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